Теория графов. Теория графов – обширный самостоятельный раздел дискретной математики. Используется при проектировании компьютерных сетей, трубопроводов, - презентация. Графы. Основные понятия. Теория и практика Графы и их использование презентация

Слайд 2

Граф – это конечная совокупность вершин, некоторые из которых соединены ребрами т.е. это совокупность точек, называемых вершинами, и линий, соединяющих некоторые из вершин, называемых ребрами или дугами в зависимости от вида графа.(н-р, схема метрополитена, генеалогическое дерево, дерево папок и каталогов и др.)

Слайд 3

Виды (примеры) графов:

Обычный (неориентированный) граф 2 вершины могут быть соединены только одним ребром. Соединяющие линии называются ребрами. (смежные вершины – это 2 вершины, соединенные ребром)

Слайд 4

Ориентированный граф (орграф) - это граф, у которого на линиях, соединяющих вершины, указано направление (соединяющие линии называются дугами)

Слайд 5

Нагруженный граф - это граф, у которого около каждого ребра проставлено число, характеризующее связь между соответствующими вершинами (граф с помеченными ребрами).

Слайд 6

Сеть- это орграф, у которого около каждого ребра проставлено число, характеризующее связь между соответствующими вершинами (орграф с помеченными ребрами).

Слайд 7

Решение задачи, моделируемой нагруженным графом или сетью, сводится, как правило, к нахождению оптимального в том или ином смысле маршрута, ведущего от одной вершины к другой

Слайд 8

Семантический граф- это граф или орграф, у которого около каждого ребра проставлено не число, а иная информация, характеризующее связь между соответствующими вершинами.

Слайд 9

Мультиграф 2 вершины соединены 2 ребрами и более (кратные ребра)

Слайд 10

Петля в графе (ребро соединяет вершину саму с собой)

Слайд 11

Понятие степени вершины графа – это количество ребер, выходящих из одной вершины

Слайд 12

СВОЙСТВА ГРАФОВ:

1) Для любого графа сумма степеней вершин равна удвоенному количеству ребер 2) Для любого графа количество вершин нечетной степени всегда четно (аналог задачи: в любой момент времени количество людей, сделавших нечетное количество рукопожатий, четно) 3) В любом графе есть по крайней мере 2 вершины, имеющие одинаковую степень.

Слайд 13

1) Маршрут на графе – это последовательность ребер, в которой конец одного ребра служит началом следующего (циклический маршрут – если конец последнего ребра последовательности совпадает с началом 1-го ребра)2) Цепь – это маршрут, в котором каждое ребро содержится не более одного раза3) Цикл – это цепь, являющаяся циклическим маршрутом4) Простая цепь – это цепь, проходящая через каждую свою вершину ровно 1 раз5) Простой цикл – это цикл, являющийся простой цепью6) Связанные вершины – это вершины (например, А и B), для которых существует цепь, начинающаяся в А и заканчивающаяся в B7)Связный граф – это граф, у которого любые 2 вершины связанны. Если граф несвязен, то в нем можно выделить так называемые связанные компоненты (т.е. множества вершин, соединенных ребрами исходного графа, каждое из которых является связным графом)Один и тот же граф может быть изображен по-разному.

Слайд 14

Пример 1

V={1,2,3,4,5,6,7,8,9,10}-это множество вершин графа. Для каждого из перечисленных ниже случаев изобразите граф и определите все степени вершин а) вершины x y соединены ребром тогда и только тогда, когда (x-y)/3 целое число б) вершины x y соединены ребром тогда и только тогда, когда x+y=9 в) вершины x y соединены ребром тогда и только тогда, когда x+y содержится в множестве V={1,2,3,4,5,6,7,8,9,10} г) вершины x y соединены ребром тогда и только тогда, когда |x-y|

  • познакомить учащихся с понятием “Граф”, основными принципами его построения;
  • формировать умение выделять отношения, связывающие объекты;
  • развивать внимание, способность к логическому рассуждению;
  • воспитывать взаимопомощь, умение работать в коллективе
  • закрепление полученных знаний на практике
  • развитие памяти, внимания;
  • развитие самостоятельности;
  • воспитание познавательной активности.
  • Оборудование:

    • компьютерный класс, оснащенный современной техникой, видеопроектор, экран;
    • компьютеры с ОС Windows XP, программа Microsoft Office 2003 PowerPoint;
    • оборудование доски (тема урока, новые термины). Раздаточный материал.

    План урока.

    II. Изложение нового материала. (10 мин.)

    III. Закрепление материала. Практическая работа. (15-20 мин.)

    IV. Подведение итога урока.(2 мин)

    V. Домашнее задание.

    I. Организационный момент. Актуализация знаний.

    Здравствуйте! Наш урок называется “Графы”. Мы познакомимся с понятие “Графы”, научимся их изображать и решать задачи по этой теме.

    II Изложение нового материала.

    Первая работа по теории графов принадлежит Леонарду Эйлеру (1736 г.), хотя термин “граф” впервые ввел в 1936 году венгерский математик Денеш Кениг. Графами были названы схемы, состоящие из точек и соединяющих эти точки отрезков прямых или кривых (примеры графов изображены на рисунке 1)

    С помощью графов часто упрощалось решение задач, сформулированных в различных областях знаний: в автоматике, электронике, физике, химии и др. С помощью графов изображаются схемы дорог, газопроводов, тепло- и электросети. Помогают графы в решении математических и экономических задач.

    Граф – (от греческого grapho – пишу) - это средство наглядного представления элементов объекта связей между ними. Это замечательные математические объекты, с их помощью можно решать очень много различных, внешне не похожих друг на друга задач.

    Граф – это некоторая информационная модель

    Граф состоит из вершин или узлов, связанных дугами или отрезками - рёбрами. Линия может быть направлена, т. е. иметь стрелку (дуга), если не направлена – ребро. Две вершины, соединённые дугой или ребром называются смежными.

    Примеры графов (Слайд 4, 5, 6)

    Задание 1 (Слайд 7):

    Между девятью планетами солнечной системы установлено космическое сообщение. Рейсовые ракеты летают по следующим маршрутам:

    Земля – Меркурий; Плутон – Венера; Земля – Плутон; Плутон – Меркурий; Меркурий – Венера; Уран – Нептун; Нептун – Сатурн; Сатурн – Юпитер; Юпитер – Марс; Марс – Уран.

    Можно ли долететь на рейсовых ракетах с Земли до Марса?

    Решение: Нарисуем схему условия: планеты изобразим точками, а маршруты ракет – линиями.

    Теперь сразу видно, что долететь с Земли до Марса нельзя.

    Две вершины, соединённые дугой или ребром называются смежными. Каждому ребру или дуге соотносится какое-нибудь число. Число может обозначать расстояние между населёнными пунктами, время перехода от одной вершины к другой и т. д.

    Задание 2 (9 слайд) – решение у доски. Маша пришла в зоопарк и хочет увидеть как можно больше зверей. По какой тропинке ей надо идти? Желтая, красная, зеленая?

    Задание 3 (11 слайд) – решение у доски. Пять футбольных команд А, Б, В, Г, Д должны сыграть в матчи друг с другом. Уже сыграли А с Б, В, Г; Б с А, В, Д. сколько матчей уже сыграно? Сколько осталось сыграть?

    Представление графов (Слайд 12)

    Граф может быть представлен в виде списка дуг (АВ; 7), графически или с помощью таблицы.

    Списки дуг Графическая форма Табличная форма
    (АВ; 7),
    А В С
    А 3
    В 4
    С 3 4

    III. Закрепление материалы: учащимся предлагается разделить на группы и выполнить задания. Работая в малой группе, ученики обсуждают модели, основываясь на теоретических знаниях, полученных в начале урока. Тем самым достигается повторение и закрепление материала.

    Задание 2 (Слайд 13)

    IV. Итог урока

    Ребята, какие новые слова вы сегодня узнали? (Граф, вершина графа, ребра графа.)

    Что могут обозначать вершины графа? (Города; объекты, которые; связаны.)

    Что обозначают ребра графа (Пути, движения, направления)

    Приведите пример, где в жизни мы можем с ними встретиться?

    Как изображаются графы?

    V. Домашнее задание. (Слайд 15)

    Граф это конечное множество вершин V и множество ребер R, соединяющих пары вершин, G=(V,R). Мощности множеств V и R равны N и M. Множество ребер может быть пустым. Примеры вершин – объекты любой природы (населенные пункты, компьютерные сети). Примеры ребер – дороги, стороны, линии.


    Вершины, соединенные ребром, называются смежными. Ребра, имеющие общую вершину, также называются смежными. Ребро и любая из его двух вершин называются инцидентными. Степень вершины – количество инцидентных ей ребер. Каждый граф можно представить на плоскости множеством точек, соответствующих вершинам, которые соединены линиями, соответствующими ребрам.




    Маршрут графа – последовательность вершин и ребер. Маршрут замкнутый (циклический), если начальная и конечная вершины совпадают. Маршрут – простая цепь, если все вершины и ребра различны. Граф связный, если каждая вершина достижима из любой другой. Вершины, не имеющие инцидентных ребер, называются изолированными.








    Матрица инциденций










    Списки связи




    Перечень ребер










    Матрица смежности связного взвешенного неориенторованного графа графа








    Построение остовного связного дерева минимального веса. Алгоритм Крускала Из графа удаляют все ребра, получается остовной подграф, где все вершины изолированы. Каждая вершина помещается в одноэлементное подмножество. Ребра сортируются по возрастанию весов. Ребра последовательно, по возрастанию их весов, включаются в остовное дерево.


    Существует 4 случая: 1) обе вершины включаемого ребра принадлежат одноэлементным подмножествам, тогда они объединяются в новое, связное подмножество; 2) одна из вершин принадлежит связному подмножеству, а другая нет, тогда включаем вторую в подмножество, которому принадлежит первая; 3) обе вершины принадлежат разным связным подмножествам, тогда объединяем подмножества; 4) Обе вершины принадлежат одному связному подмножеству, тогда исключаем данное ребро.




    Пример построения остовного дерева минимального веса для графа GG Выполняемые действия Множество вершин Граф 1Построим остовной подграф с изолированным и вершинами Получим 5 одноэлементных подмножеств: {V 1 }, {V 2 }, {V 3 }, {V 4 }, {V 5 } 2Найдем ребро минимального веса (R 15) и добавим его в остовной подграф Образуем связное подмножество вершин: {V 1,V 5 }. Сохраняем подмножества {V 2 }, {V 3 }, {V 4 }


    Выполняемые действия Множество вершинГраф 3Среди оставшихся найдем ребро минимального веса (R 45) и добавим его в остовной подграф Добавим в связное подмножество вершину: {V 1,V 5, V 4 }. Сохраняем подмножества {V 2 }, {V 3 } 4Среди оставшихся найдем ребро минимального веса (R 23) и добавим его в остовной подграф Образуем новое связное подмножество вершин: {V 2,V 3 }. Сохраняем первое связное подмножество {V 1,V 5, V 4 }.


    Выполняемые действия Множество вершинГраф 5Среди оставшихся найдем ребро минимального веса (R 25) и добавим его в остовной подграф Объединяем подмножества в одно связное подмножество {V 1,V 5, V 4,V 2,V 3 }. 6Остальные ребра не включаются в граф, т.к. все их вершины уже принадлежат одному связному множеству.


    Выполняемые действия Множество вершинГраф 7Получен граф, который: остовной (все вершины включены); связный (все вершины можно соединить маршрутами); дерево (нет циклов); имеет минимальный вес. 8Полученное остовное дерево имеет минимальный вес: R 12 +R 25 +R 15 +R 45 = =80 9 Циклическое число графа G равно γ=m-n+1=8-5+1=4, что соответствует количеству ребер, не включенных в дерево.






    Объявление переменных Два целочисленных пятиэлементных массива X и Y для хранения координат вершин графа Целочисленный двумерный массив R для хранения весов ребер графа Целочисленные переменные i, n и k для счетчиков циклов Целочисленная переменная S для хранения суммы весов ребер дерева минимального веса


    Генерация случайных координат 5-ти вершин графа (цикл по i). Вычисление весов ребер. Вывод матрицы смежности взвешенного орграфа (вложенные циклы по n и по k) Вывод матрицы смежности взвешенного неориентрованного графа – половины элементов начальной матрицы (начальное значение k=n+1) Тело программы







    1 слайд

    2 слайд

    Впервые основы теории графов появились в работах Леонарда Эйлера (1707-1783; швейцарский, немецкий и российский математик) , в которых он описывал решение головоломок и математических развлекательных задач. Теория графов началась с решения Эйлером задачи о семи мостах Кёнигсберга.

    3 слайд

    Издавна среди жителей Кёнигсберга была распространена такая загадка: как пройти по всем мостам (через реку Преголя), не проходя ни по одному из них дважды? Многие пытались решить эту задачу как теоретически, так и практически, во время прогулок. Но никому это не удавалось, однако не удавалось и доказать, что это даже теоретически невозможно. На упрощённой схеме части города (графе) мостам соответствуют линии (дуги графа), а частям города - точки соединения линий (вершины графа). В ходе рассуждений Эйлер пришёл к следующим выводам: Невозможно пройти по всем мостам, не проходя ни по одному из них дважды.

    4 слайд

    Существуют 4 группы крови. При переливании крови от одного человека к другому не все группы совместимы. Но известно, что одинаковые группы можно переливать от человека к человеку, т.е. 1 – 1, 2 – 2 и т.д. А также 1 группу можно переливать всем остальным группам, 2 и 3 группу только 4 группе. Задача.

    5 слайд

    6 слайд

    Графы Граф – это информационная модель, представленная в графической форме. Граф - множество вершин (узлов), соединённых рёбрами. Граф с шестью вершинами и семью рёбрами. Вершины называют смежными, если их соединяет ребро.

    7 слайд

    Ориентированные графы - орграфы Каждое ребро имеет одно направление. Такие ребра называются дугами. Ориентированный граф

    8 слайд

    Взвешенный граф Это граф, рёбрам или дугам которого поставлены в соответствие числовые величины (они могут обозначать, например, расстояние между городами или стоимость перевозки). Вес графа равен сумме весов его рёбер. Таблице (она называется весовой матрицей) соответствует граф. 1 2 4 2 3 A B C D E

    9 слайд

    Задача Между населёнными пунктами A, B, C, D, E, F построены дороги, протяжённость которых приведена в таблице. (Отсутствие числа в таблице означает, что прямой дороги между пунктами нет). Определите длину кратчайшего пути между пунктами A и F (при условии, что передвигаться можно только по построенным дорогам). 1) 9 2) 10 3) 11 4) 12

    10 слайд

    1. 2. 3. 4. 5. Длина кратчайшего маршрута A-B-C-E-F равна 9 2 4 2 4 7 1 2 4 7 1 3 4 2 4 7 1 3 4 3 2 4 7 1 3 4 3 2